skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Shigang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 3, 2026
  2. Adverse clinical events related to unsafe care are among the top ten causes of death in the U.S. Accurate modeling and prediction of clinical events from electronic health records (EHRs) play a crucial role in patient safety enhancement. An example is modeling de facto care pathways that characterize common step-by-step plans for treatment or care. However, clinical event data pose several unique challenges, including the irregularity of time intervals between consecutive events, the existence of cycles, periodicity, multi-scale event interactions, and the high computational costs associated with long event sequences. Existing neural temporal point processes (TPPs) methods do not effectively capture the multi-scale nature of event interactions, which is common in many real-world clinical applications. To address these issues, we propose the cross-temporal-scale transformer (XTSFormer), specifically designed for irregularly timed event data. Our model consists of two vital components: a novel Feature-based Cycle-aware Time Positional Encoding (FCPE) that adeptly captures the cyclical nature of time, and a hierarchical multi-scale temporal attention mechanism, where different temporal scales are determined by a bottom-up clustering approach. Extensive experiments on several real-world EHR datasets show that our XTSFormer outperforms multiple baseline methods. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  3. Free, publicly-accessible full text available December 4, 2025
  4. Flood mapping on Earth imagery is crucial for disaster management, but its efficacy is hampered by the lack of high-quality training labels. Given high-resolution Earth imagery with coarse and noisy training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the true high-resolution labels while training neural network parameters. Traditional methods are largely based on specific physical properties and thus fall short of capturing the rich domain constraints expressed by symbolic logic. Neural-symbolic models can capture rich domain knowledge, but existing methods do not address the unique spatial challenges inherent in flood mapping on high-resolution imagery. To fill this gap, we propose a spatial-logic-aware weakly supervised learning framework. Our framework integrates symbolic spatial logic inference into probabilistic learning in a weakly supervised setting. To reduce the time costs of logic inference on vast high-resolution pixels, we propose a multi-resolution spatial reasoning algorithm to infer true labels while training neural network parameters. Evaluations of real-world flood datasets show that our model outperforms several baselines in prediction accuracy. The code is available at https://github.com/spatialdatasciencegroup/SLWSL. 
    more » « less
  5. Per-flow size measurement is key to many streaming applications and management systems, particularly in high-speed networks. Performing such measurement on the data plane of a network device at the line rate requires on-chip memory and computing resources that are shared by other key network functions. It leads to the need for very compact and fast data structures, called sketches, which trade off space for accuracy. Such a need also arises in other application context for extremely large data sets. The goal of sketch design is two-fold: to measure flow size as accurately as possible and to do so as efficiently as possible (for low overhead and thus high processing throughput). The existing sketches can be broadly categorized to multi-update sketches and single update sketches. The former are more accurate but carry larger overhead. The latter incur small overhead but their accuracy is poor. This paper proposes a Single update Sketch with a Variable counter Structure (SSVS), a new sketch design which is several times faster than the existing multi-update sketches with comparable accuracy, and is several times more accurate than the existing single update sketches with comparable overhead. The new sketch design embodies several technical contributions that integrate the enabling properties from both multi-update sketches and single update sketches in a novel structure that effectively controls the measurement error with minimum processing overhead. 
    more » « less
  6. Data streaming has many applications in network monitoring, web services, e-commerce, stock trading, social networks, and distributed sensing. This paper introduces a new problem of real-time burst detection in flow spread, which differs from the traditional problem of burst detection in flow size. It is practically significant with potential applications in cybersecurity, network engineering, and trend identification on the Internet. It is a challenging problem because estimating flow spread requires us to remember all past data items and detecting bursts in real time requires us to minimize spread estimation overhead, which was not the priority in most prior work. This paper provides the first efficient, real-time solution for spread burst detection. It is designed based on a new real-time super spreader identifier, which outperforms the state of the art in terms of both accuracy and processing overhead. The super spreader identifier is in turn based on a new sketch design for real-time spread estimation, which outperforms the best existing sketches. 
    more » « less